4.4 Review

Some distinguishable properties between acid-stable and neutral types of α-amylases from acid-producing koji

Journal

JOURNAL OF BIOSCIENCE AND BIOENGINEERING
Volume 104, Issue 5, Pages 353-362

Publisher

SOC BIOSCIENCE BIOENGINEERING JAPAN
DOI: 10.1263/jbb.104.353

Keywords

acid-stable alpha-amylase; koji mold; citric acid; shochu; Aspergillus kawachii; Aspergillus usamii

Ask authors/readers for more resources

The highly humid climate of Japan facilitates the growth of various molds. Among these molds, Aspergillus oryzae is the most important and popular in Japan, and has been used as yellow-koji in producing many traditional fermented beverages and foods, such as Japanese sake, and soy sauce. Taka-amylase A (TAA), a major enzyme produced by the mold, is well known worldwide to be a leading enzyme for industrial utilization and academic study, since many extensive studies have been carried out with TAA. In southern Kyushu, the other koji's of citric acid-producing molds have often been used, such as in the production of a traditional distilled liquor of shochu. The koji molds black-koji and white-koji produce two types of alpha-amylase, namely, acid-stable (AA) and common neutral (NA). The latter enzyme is enzymatically and genetically similar to TAA. In this review, we investigate AA from three molds, Aspergillus niger, A. kawachii and A. awamori, and the yeast Cryptococcus sp. regarding the distinguishable properties between AA and NA. (i) The N-terminus amino acid sequences of AA determined by molecular cloning started with the sequence of L-S-A-, whereas those of NA started with A-T-P-. (ii) Most of the full sequences of AA were composed of, besides a core catalytic domain, an extra domain of a hinge region and a carbohydrate binding domain, which could be responsible for raw-starch-digestibility. The AA from A. niger has no exceptionally extra domain, similarly to NA. (iii) Simple methods for distinguishing AA from NA using CNP-alpha-G3 and G5 as substrates were developed by our group. (iv) The number of subsite in AA on the basis of its cleavage pattern of maltooligosaccharides was estimated to be five, which differs from that of TAA, 7-9. AA has many advantages in industrial applications, such as its acid-stability, thermostability, and raw-starch digesting properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available