4.6 Article

LuxO controls extracellular protease, haemolytic activities and siderophore production in fish pathogen Vibrio alginolyticus

Journal

JOURNAL OF APPLIED MICROBIOLOGY
Volume 103, Issue 5, Pages 1525-1534

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2672.2007.03380.x

Keywords

haemolytic activity; LuxO; protease; quorum sensing; rpoN; siderophore; Vibrio alginolyticus

Ask authors/readers for more resources

Aims: To characterize the luxO gene in fish pathogen Vibrio alginolyticus MVP01 and investigate its roles in regulation of extracellular products (ECP) and siderophore production. Methods and Results: The luxO gene was cloned from V. alginolyticus MVP01. Genetic analysis revealed that it encoded a protein with high similarity to other LuxO homologues. The luxO in-frame deletion mutant and rpoN null mutant were constructed with suicide plasmids. We demonstrated that sole deletion in LuxO increased the secretion of extracellular protease and haemolytic products, but decreased siderophore production for V. alginolyticus MVP01. Mutants with null rpoN displayed significantly enhanced protease level and siderophore production while notable reduction in haemolytic activities of ECP. Conclusions: Vibrio alginolyticus harbours functional luxO gene that regulates the secretion of extracellular protease and haemolytic materials as well as siderophore production in either sigma(54) dependent or independent manners. Significance and Impact of the Study: The current study demonstrated that V. alginolyticus MVP01 produces extracellular protease and haemolytic activity material as well as siderophore, which may be characteristics of the virulence of the strain. Revelations that secretion of these products is under the regulation of LuxO and sigma(54) as well as the potential quorum sensing systems in V. alginolyticus MVP01 will expedite the understanding of vibriosis pathogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available