4.7 Article

Renewable-resource thermoplastic elastomers based on polylactide and polymenthide

Journal

BIOMACROMOLECULES
Volume 8, Issue 11, Pages 3634-3640

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm700699g

Keywords

-

Ask authors/readers for more resources

An alpha,omega-functionalized polymenthide was synthesized by the ring-opening polymerization of menthide in the presence of diethylene glycol with diethyl zinc as the catalyst. Termination with water afforded the dihydroxy polymenthide. The reaction of this telechelic polymer with triethylaluminum formed the corresponding aluminum alkoxide macroinitiator that was used for the controlled polymerization of lactide to yield biorenewable polylactide-b-polymenthide-b-polylactide triblock copolymers. The molecular weight and chemical composition were easily adjusted by the monomer-to-initiator ratios. Microphase separation in these triblock copolymers was confirmed by small-angle X-ray scattering and differential scanning calorimetry. A representative triblock was prepared with a hexagonally packed cylindrical morphology as determined by small-angle X-ray scattering, and tensile testing was employed to assess the mechanical behavior. On the basis of the ultimate elongations and elastic recovery, these triblock copolymers behaved as thermoplastic elastomers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available