4.6 Article

High capacity alkaline super-iron boride battery

Journal

ELECTROCHIMICA ACTA
Volume 52, Issue 28, Pages 8138-8143

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2007.07.022

Keywords

boride anodes; super-iron boride battery; zirconia coating; stabilization; reversibility

Ask authors/readers for more resources

A high capacity alkaline redox storage chemistry is explored based on a novel Fe6+/B2- chemistry. The alkaline anodes based on transition metal borides can deliver exceptionally high electrochemical capacity. Over 3800 mAh/g discharge capacity is obtained for the commercial available vanadium diboride (VB2), much higher than the theoretical capacity of commonly used zinc metal (820 mAh/g) alkaline anode. Coupling with the super-iron cathodes, the novel Fe6+/B2- battery chemistry generates a matched electrochemical potential to the pervasive, conventional MnO2-Zn battery, but sustains a much higher electrochemical capacity. Stability enhancement of super-iron boride battery is also studied. A zirconia coating effectively prevents both the decomposition of boride anodes and the passivation of Fe(VI) cathodes, and sustains facile both anodic and cathodic charge transfer. Reversibility of boride anodes is demonstrated with TiB2 and VB2. It is shown that these two boride anodes exhibit the reversibility in a certain extent. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available