4.8 Article

Thermal buckling of initially compressed single-walled carbon nanotubes by molecular dynamics simulation

Journal

CARBON
Volume 45, Issue 13, Pages 2614-2620

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2007.08.007

Keywords

-

Ask authors/readers for more resources

Thermal buckling of initially compressed single-walled carbon nanotubes subjected to a uniform temperature rise is presented by using molecular dynamics simulations. Comprehensive numerical calculations are carried out for armchair and zigzag carbon nanotubes with various geometric dimensions. The results show that thermal buckling can occur beyond a critical value of temperature when the tube is initially compressed to a point prior to buckling. The critical buckling temperature increases as the compressive load ratio parameter decreases, and varies dramatically with nanotube helicity, radius and length. Owing to strong thermal oscillations of carbon atoms, a zigzag carbon nanotube with relatively small radius can buckle at a surprisingly lower temperature than the expected one. (C) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available