4.6 Article

Theory of semiconductor quantum-wire-based single- and two-qubit gates

Journal

PHYSICAL REVIEW B
Volume 76, Issue 19, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.76.195301

Keywords

-

Ask authors/readers for more resources

A GaAs/AlGaAs based two-qubit quantum device that allows the controlled generation and straightforward detection of entanglement by measuring a stationary current-voltage characteristics is proposed. We have developed a two-particle Green's function method of open systems and calculate the properties of three-dimensional interacting entangled systems nonperturbatively. We present concrete device designs and detailed charge-self-consistent predictions. One of the qubits is an all-electric Mach-Zehnder interferometer that consists of two electrostatically defined quantum wires with coupling windows, whereas the second qubit is an electrostatically defined double quantum dot located in a second two-dimensional electron gas beneath the quantum wires. We find that the entanglement of the device can be controlled externally by tuning the tunneling coupling between the two quantum dots.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available