4.6 Article

Role of the asymmetry of the homodimeric b2 stator stalk in the interaction with the F1 sector of Escherichia coli ATP synthase

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 44, Pages 31920-31927

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M706259200

Keywords

-

Ask authors/readers for more resources

The b subunit dimer in the peripheral stator stalk of Escherichia coli ATP synthase is essential for enzyme assembly and the rotational catalytic mechanism. Recent protein chemical evidence revealed the dimerization domain of b to contain a novel two-stranded right-handed coiled coil with offset helices. Here, the existence of this structure in more complete constructs of b containing the C-terminal domain, and therefore capable of binding to the peripheral F1-ATPase, was supported by the more efficient formation of intersubunit disulfide bonds between cysteine residues that are proximal only in the offset arrangement and by the greater thermal stabilities of crosslinked heterodimers trapped in the offset configuration as opposed to homodimers with the helices trapped in-register. F1-ATPase binding analyses revealed the offset heterodimers to bind F1 more tightly than in-register homodimers. Mutations near the C terminus of b were incorporated specifically into either the N-terminally or the C-terminally shifted polypeptide, bN or bC, respectively, to determine the contribution of each position to F1 binding. Deletion of the last four residues of bN substantially weakened F1 binding, whereas the effect of the deletion in bC was modest. Similarly, benzophenone maleimide introduced at the C terminus of bN, but not bC, mediated cross-linking to the delta subunit of F1. These results imply that the polypeptide in the bN position is more important for F1 binding than the one in the bC position and illustrate the significance of the asymmetry of the b dimer in the enzyme.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available