4.6 Article

Interaction of the adipocyte fatty acid-binding protein with the hormone-sensitive lipase - Regulation by fatty acids and phosphorylation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 44, Pages 32424-32432

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M703730200

Keywords

-

Funding

  1. NIDDK NIH HHS [DK053189] Funding Source: Medline

Ask authors/readers for more resources

Adipocyte fatty acid-binding protein (AFABP/aP2) forms a physical complex with the hormone-sensitive lipase (HSL) and AFABP/aP2-null mice exhibit reduced basal and hormone-stimulated lipolysis. To identify the determinants affecting the interaction fluorescence resonance energy transfer (FRET) imaging was used in conjunction with a mutagenesis strategy to evaluate the roles AFABP/aP2 fatty acid binding and HSL phosphorylation have in complex formation as well as determine the HSL binding site on AFABP/aP2. The nonfatty acid binding mutant of AFABP/aP2 (R126Q) failed to form a FRET-competent complex with HSL either under basal or forskolin-stimulated conditions, indicating that lipid binding is required for association. Once bound to HSL and on the surface of the lipid droplet, YFP-AFABP/aP2 (but not YFP-HSL) exhibited energy transfer between the fusion protein and BODIPY-C12-labeled triacylglycerol. Serine to alanine mutations at the two PKA phosphorylation sites of HSL (659 and 660), or at the AMPK phosphorylation sites (565), blocked FRET between HSL and AFABP/aP2. Substitution of isoleucine for lysine at position 21 of AFABP/aP2 (K21I), but not 31 (K31I), resulted in a non-HSL-binding protein indicating that residues on helix alpha I of AFABP/ aP2 define a component of the HSL binding site. These results indicate that the ligand-bound form of AFABP/aP2. interacts with the activated, phosphorylated HSL and that the association is likely to be regulatory; either delivering FA to inhibit HSL (facilitating feedback inhibition) or affecting multicomponent complex formation on the droplet surface.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available