4.7 Article

Stringent test of the statistical quasiclassical trajectory model for the H3+ exchange reaction:: A comparison with rigorous statistical quantum mechanical results

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 17, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2774982

Keywords

-

Ask authors/readers for more resources

A complete formulation of a statistical quasiclassical trajectory (SQCT) model is presented in this work along with a detailed comparison with results obtained with the statistical quantum mechanical (SQM) model for the H++D-2 and H++H-2 reactions. The basic difference between the SQCT and the SQM models lies in the fact that trajectories instead of wave functions are propagated in the entrance and exit channels. Other than this the two formulations are entirely similar and both comply with the principle of detailed balance and conservation of parity. Reaction probabilities, and integral and differential cross sections (DCS's) for these reactions at different levels of product's state resolution and from various initial states are shown and discussed. The agreement is in most cases excellent and indicates that the effect of tunneling through the centrifugal barrier is negligible. Some differences are found, however, between state resolved observables calculated by the SQCT and the SQM methods which makes use of the centrifugal sudden (coupled states) approximation (SQM-CS). When this approximation is removed and the full close coupling treatment is used in the SQM model (SQM-CC), an almost perfect agreement is achieved. This shows that the SQCT is sensitive enough to show the relatively small inaccuracies resulting from the decoupling inherent to the CS approximation. In addition, the effect of ignoring the parity conservation is thoroughly examined. This effect is in general minor except in particular cases such as the DCS from initial rotational state j=0. It is shown, however, that in order to reproduce the sharp forward and backward peaks the conservation of parity has to be taken into account. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available