4.6 Article

Template-assisted synthesis of ruthenium oxide nanoneedles: Electrical and electrochemical properties

Journal

JOURNAL OF PHYSICAL CHEMISTRY C
Volume 111, Issue 44, Pages 16593-16600

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp0744836

Keywords

-

Ask authors/readers for more resources

We here demonstrate the formation of bundles of RuO2 nanoneedles (ca. 100 nm diameter) by a templateassisted electrodeposition from aqueous RuCl3 solution under potentiostatic conditions at room temperature. Cyclic voltammetric measurements in 0.5 M H2SO4 show significantly higher redox-related charging behavior for the RuO2 nanoneedles compared to that of the commercial sample, which is also supported by the electrochemical impedance data. A comparison of the specific capacitance reveals a higher value for nanoneedles (3 F/g instead of 0.4 F/g for the bulk), which has been explained on the basis of enhanced reactivity. More interestingly, electrical transport measurements reveal a transition from metallic to semiconducting behavior especially at low-temperature caused by an impurity scattering mechanism. We anticipate that the present simple route for the fabrication of RuO2 nanostructures will be useful to exploit their potentials in various fields such as electrocatalysis, nanoelectronics, and more importantly for designing supercapacitors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available