4.7 Article

Computational RNomics of drosophilids

Journal

BMC GENOMICS
Volume 8, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1471-2164-8-406

Keywords

-

Ask authors/readers for more resources

Background: Recent experimental and computational studies have provided overwhelming evidence for a plethora of diverse transcripts that are unrelated to protein-coding genes. One subclass consists of those RNAs that require distinctive secondary structure motifs to exert their biological function and hence exhibit distinctive patterns of sequence conservation characteristic for positive selection on RNA secondary structure. The deep-sequencing of 12 drosophilid species coordinated by the NHGRI provides an ideal data set of comparative computational approaches to determine those genomic loci that code for evolutionarily conserved RNA motifs. This class of loci includes the majority of the known small ncRNAs as well as structured RNA motifs in mRNAs. We report here on a genome-wide survey using RNAz. Results: We obtain 16 000 high quality predictions among which we recover the majority of the known ncRNAs. Taking a pessimistically estimated false discovery rate of 40% into account, this implies that at least some ten thousand loci in the Drosophila genome show the hallmarks of stabilizing selection action of RNA structure, and hence are most likely functional at the RNA level. A subset of RNAz predictions overlapping with TRFI and BRF binding sites [Isogai et al., EMBO J. 26: 79-89 (2007)], which are plausible candidates of PoI III transcripts, have been studied in more detail. Among these sequences we identify several clusters of ncRNA candidates with striking structural similarities. Conclusion: The statistical evaluation of the RNAz predictions in comparison with a similar analysis of vertebrate genomes [Washietl et al., Nat. Biotech. 23: 1383-1390 (2005)] shows that qualitatively similar fractions of structured RNAs are found in introns, UTRs, and intergenic regions. The intergenic RNA structures, however, are concentrated much more closely around known protein-coding loci, suggesting that flies have significantly smaller complement of independent structured ncRNAs compared to mammals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available