4.4 Article

Interaction of monomolecular G4-DNA nanowires with TMPyP: Evidence intercalation

Journal

BIOCHEMISTRY
Volume 46, Issue 45, Pages 12925-12929

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bi701301u

Keywords

-

Ask authors/readers for more resources

Interaction of meso-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP) with G4-wires composed of similar to 1000 stacked tetrads (Kotlyar, A. B., Borovok, N., Molotsky, T., Cohen, H., Shapir, E., and Porath, D. (2005) Long monomolecular G4-DNA nanowires, Adv. Mater. 17, 1901-1905) was studied. These wires exist in either K (Na)-free or K forms in contrast to short telomeric G-quadruplexes, which are stable only in the presence of monovalent cations. We showed that a stable complex between K-free G4-wires and the porphyrin is formed at a TMPyP to tetrad molar ratio of 0.5. A 19 nm shift and a hypochromicity of 58% in the absorption spectrum, the induced CD of the porphyrin, and efficient energy transfer,between TMPyP and K-free G4-wires suggest an intercalative mechanism of TMPyP binding. The K form interacts with TMPyP much weaker than the K-free form of the wires. Binding of TMPyP to the K form is characterized by a small (3 nm) shift of the Sorel band, a weak positive induced CD in the Soret region, and the absence of energy transfer between the G-bases and the porphyrin. These parameters reflect a nonintercalaitive binding of TMPyP to the K form of the wires. We suggest that K ions positioned in the center space between the adjacent tetrads limit the access of TMPyP and other organic molecules to this region, thus enabling only nonintercalative modes of ligand binding to G-quadruplex DNAs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available