4.8 Article

Self-recognition and self-selection in multicomponent supramolecular coordination networks on surfaces

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0704882104

Keywords

nanostructure; scanning tunneling microscopy; self-assembly; surface chemistry; organic molecule ligands

Ask authors/readers for more resources

Self-recognition, self-selection, and dynamic self-organization are of fundamental importance for the assembly of all supramolecular systems, but molecular-level information is not generally accessible. We present direct examples of these critical steps by using scanning tunneling microscopy to study mixtures of complementary organic ligands on a copper substrate. The ligands coordinate cooperatively with iron atoms to form well ordered arrays of rectangular multicomponent compartments whose size and shape can be deliberately tuned by selecting ligands of desired length from complementary ligand families. We demonstrate explicitly that highly ordered supramolecular arrays can be produced from redundant ligand mixtures by molecular self-recognition and -selection, enabled by efficient error correction and cooperativity, and show an example of failed self-selection due to error tolerance in the ligand mixture, leading to a disordered structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available