4.8 Article

Loss of luminal Ca2+ activation in the cardiac ryanodine receptor is associated with ventricular fibrillation and sudden death

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0706573104

Keywords

spontaneous Ca2+ release; sudden cardiac death; ventricular arrhythmia

Ask authors/readers for more resources

Different forms of ventricular arrhythmias have been linked to mutations in the cardiac ryanodine receptor (RyR)2, but the molecular basis for this phenotypic heterogeneity is unknown. We have recently demonstrated that an enhanced sensitivity to luminal Ca2+ and an increased propensity for spontaneous Ca2+ release or store-overload-induced Ca2+ release (SOICR) are common defects of RyR2 mutations associated with catecholaminergic polymorphic or bidirectional ventricular tachycardia. Here, we investigated the properties of a unique RyR2 mutation associated with catecholaminergic idiopathic ventricular fibrillation, A4860G. Single-channel analyses revealed that, unlike all other disease-linked RyR2 mutations characterized previously, the A4860G mutation diminished the response of RyR2 to activation by luminal Ca2+, but had little effect on the sensitivity of the channel to activation by cytosolic Ca2+. This specific impact of the A4860G mutation indicates that the luminal Ca2+ activation of RyR2 is distinct from its cytosolic Ca2+ activation. Stable, inducible HEK293 cells expressing the A4860G mutant showed caffeine-induced Ca2+ release but exhibited no SOICR. Importantly, HL-1 cardiac cells transfected with the A4860G mutant displayed attenuated SOICR activity compared with cells transfected with RyR2 WT. These observations provide the first evidence that a loss of luminal Ca2+ activation and SOICR activity can cause ventricular fibrillation and sudden death. These findings also indicate that although suppressing enhanced SOICR is a promising antiarrhythmic strategy, its oversuppression can also lead to arrhythmias.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available