4.7 Article

Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water dimer. II. Infrared spectrum and vibrational dynamics

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2787596

Keywords

-

Ask authors/readers for more resources

The infrared absorption spectrum of the protonated water dimer (H5O2+) is simulated in full dimensionality (15 dimensional) in the spectral range of 0-4000 cm(-1). The calculations are performed using the multiconfiguration time-dependent Hartree (MCTDH) method for propagation of wavepackets. All the fundamentals and several overtones of the vibrational motion are computed. The spectrum of H5O2+ is shaped to a large extent by couplings of the proton-transfer motion to large amplitude fluxional motions of the water molecules, water bending and water-water stretch motions. These couplings are identified and discussed, and the corresponding spectral lines are assigned. The large couplings featured by H5O2+ do not hinder, however, to describe the coupled vibrational motion by well defined simple types of vibration (stretching, bending; etc.) based on well defined modes of vibration, in terms of which the spectral lines are assigned. Comparison of our results to recent experiments and calculations on the system is given. The reported MCTDH IR spectrum is in very good agreement to the recently measured spectrum by Hammer et al. [J. Chem. Phys. 122, 244301 (2005)]. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available