4.7 Article

Configuration selection as a route towards efficient vibrational configuration interaction calculations

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 18, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2790016

Keywords

-

Ask authors/readers for more resources

A configuration selective vibrational configuration interaction (CI) approach is presented that efficiently reduces the variational space and thus leads to significant speedups in comparison to standard vibrational CI implementations. Deviations with respect to reference calculations are well below the accuracy of the underlying electronic structure calculations for the potential and hence are essentially negligible. Parallel implementations of the presented configuration selective vibrational CI approaches lead to further significant time savings. Benchmark calculations based on potential energy surfaces of coupled-cluster quality are presented for the fundamental modes of cis- and trans-difluoroethylene. The size-consistency error within the vibrational configuration interaction calculations of the difluoroethylene dimer has been studied in dependence on the excitation level. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available