4.6 Article

Impaired macrophage function underscores susceptibility to Salmonella in mice lacking Irgm1 (LRG-47)

Journal

JOURNAL OF IMMUNOLOGY
Volume 179, Issue 10, Pages 6963-6972

Publisher

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.179.10.6963

Keywords

-

Categories

Funding

  1. NIAID NIH HHS [UC6 AI058607, AI57831, R01 AI057831] Funding Source: Medline

Ask authors/readers for more resources

IRG proteins, or immunity-related GTPases (also known as p47 GTPases), are a group of IFN-regulated proteins that are highly expressed in response to infection. The proteins localize to intracellular membranes including vacuoles that contain pathogens in infected macrophages and other host cells. Current data indicate that the IRG protein Irgm1 (LRG-47) is critical for resistance to intracellular bacteria. This function is thought to be a consequence of regulating the survival of vacuolar bacteria in host cells. In the current work, the role of Irgm1 in controlling resistance to Salmonella typhimurium was explored to further define the mechanism through which the protein regulates host resistance. Irgm1-deficient mice displayed increased susceptibility to this bacterium that was reflected in increased bacterial loads in spleen and liver and decreased maturation of S. typhimurium granulomas. The mice also displayed an inability to concentrate macrophages at sites of bacterial deposition. In vitro, the ability of Irgm1-deficient macrophages to suppress intracellular growth of S. typhimurium was impaired. Furthermore, adhesion and motility of Irgm1-deficient macrophages after activation with IFN-gamma was markedly decreased. Altered adhesion/motility of those cells was accompanied by changes in cell morphology, density of adhesion-associated proteins, and actin staining. Together, these data suggest that in addition to regulating the maturation of pathogen-containing vacuoles, Irgm1 plays a key role in regulating the adhesion and motility of activated macrophages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available