4.6 Article

The symmetry of two-photon excited states as determined by time-resolved fluorescence depolarization experiments

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 111, Issue 45, Pages 11531-11539

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jp074506g

Keywords

-

Ask authors/readers for more resources

A new experimental and theoretical approach is presented for the quantitative determination and assignment of the two-photon absorption tensor of fluorophores dissolved in liquid solutions. Two linearly independent time-resolved fluorescence anisotropies and the two-photon polarization ratio were determined from experiments based on using the time-correlated single photon counting technique. The data were analyzed in a global manner under the assumption of prevailing diffusive molecular reorientations and when accounting for the influence of rapid unresolved reorientations. The method has been applied in fluorescence studies of perylene, two-photon excited at 800 nm. The analysis suggests that the two-photon transition is mediated via vibronic coupling including at least two vibrations of different symmetry, and also that the first singlet excited electronic state acts as a dominating intermediate state.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available