4.5 Article

The lunar exosphere:: The sputtering contribution

Journal

ICARUS
Volume 191, Issue 2, Pages 486-496

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.icarus.2007.04.034

Keywords

Moon; Moon, surface; atmospheres, composition

Ask authors/readers for more resources

We have extended our Monte Carlo model of exospheres [Wurz, P., Lammer, H., 2003. Icarus 164 (1), 1-13] by treating the ion-induced sputtering process from a known surface in a self-consistent way. The comparison of the calculated exospheric densities with experimental data, which are mostly upper limits, shows that all of our calculated densities are within the measurement limits. The total calculated exospheric density at the lunar surface of about 1 x 10(7) m(-3) as result of solar wind sputtering we find is much less than the experimental total exospheric density of about 10(12) m(-3). We conclude that sputtering contributes only a small fraction of the total exosphere, at least close to the surface. Because of the considerably larger scale height of atoms released via sputtering into the exosphere, sputtered atoms start to dominate the exosphere at altitudes exceeding a few 1000 km, with the exception of some light and abundant species released thermally, e.g. H-2, He, CH4, and OH. Furthermore, for more refractory species such as calcium, our model indicates that sputtering may well be the dominant mechanism responsible for the lunar atmospheric inventory, but observational data does not yet allow firm conclusions to be drawn. (C) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available