4.7 Article

Differential radiosensitizing potential of temozolomide in mgmt promoter methylated glioblastoma multiforme cell lines

Journal

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ijrobp.2007.07.2366

Keywords

human GBM cell lines; temozolomide; MGMT; radiosensitization; fractionated irradiation

Ask authors/readers for more resources

Purpose: To investigate the radiosensitizing potential of temozolomide (TMZ) for human glioblastoma multiforme (GBM) cell lines using single-dose and fractionated gamma-irradiation. Methods and Materials: Three genetically characterized human GBM cell lines (AMC-3046, VU-109, and VU-122) were exposed to various single (0-6 Gy) and daily fractionated doses (2 Gy per fraction) of gamma-irradiation. Repeated TMZ doses were given before and concurrent with irradiation treatment. Immediately plated clonogenic cell-survival curves were determined for both the single-dose and the fractionated irradiation experiments. To establish the net effect of clonogenic cell survival and cell proliferation, growth curves were determined, expressed as the number of surviving cells. Results: All three cell lines showed MGMT promoter methylation, lacked MGMT protein expression, and were sensitive to TMZ. The isotoxic TMZ concentrations used were in a clinically feasible range of 10 mu mol/L (AMC-3046),3 mu mol/L (VU-109), and 2.5 mu mol/L (VU-122). Temozolomide was able to radiosensitize two cell lines (AMC 3046 and VU-122) using single-dose irradiation. A reduction in the number of surviving cells after treatment with the combination of TMZ and fractionated irradiation was seen in all three cell lines, but only AMC 3046 showed a radiosensitizing effect. Conclusions: This study on TMZ-sensitive GBM cell lines shows that TMZ can act as a radiosensitizer and is at least additive to gamma-irradiation. Enhancement of the radiation response by TMZ seems to be independent of the epigenetically silenced MGMT gene. (c) 2007 Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available