4.7 Article

Effect of hyperhomocysteinemia on cardiovascular risk factors and initiation of atherosclerosis in Wistar rats

Journal

EUROPEAN JOURNAL OF PHARMACOLOGY
Volume 574, Issue 1, Pages 49-60

Publisher

ELSEVIER
DOI: 10.1016/j.ejphar.2007.07.022

Keywords

Hyperhomocysteinemia; atherosclerosis; HMG-CoA reductase; P2 receptors; caveolin

Ask authors/readers for more resources

Hyperhomocysteinemia is considered an independent risk factor for atherosclerosis. The present study was designed to assess the effect of high level of serum homocysteine on other cardiovascular risk factors and markers in rats and to study its mode of action in initiating atherosclerosis. To address this issue, four different doses of methionine (0.1 g/kg, 0.25 g/kg, 0.5 g/kg, I g/kg) were orally administered to four groups (Group 11, 111, IV, V respectively) of rats (6 rats in each group) for a period of 8 weeks to get different level of homocysteine in serum. Group I was administered with saline and served as control. Our results revealed that the level of Total cholesterol, Triglyceride, and Oxidized low-density lipoproteins increased significantly with the increase in the level of serum homocysteine. The levels of Resistin, C-reactive protein and cysteinyt-leukotrienes were found to be significantly high in Group IV (P<0.001 vs Group 1) and Group V (P<0.001 vs Group 1) at 8 weeks. Total antioxidant capacity and nitrite/nitrate level in serum showed negative correlation with the increased dose of methionine. The mRNA expression and the enzyme activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase significantly increased only in livers of rats of Group V. Furthermore, high mRNA expression of P2 receptors and caveolin were found in aorta of rats administered with high dose of methionine (Group IV and V at 8 weeks). Data obtained from in-vitro effect of homocysteine on isolated aortic arch also showed induction in P2 receptors and caveolin with the increase in the concentration of homocysteine. These findings collectively suggest that hyperhomocysteinemia initiates atherosclerosis by modulating the cholesterol biosynthesis and by significantly inducing the level of other cardiovascular risk factors and markers, which play important role in initiating atherosclerosis. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available