4.8 Article

Comparison of different current collecting modes of anode supported micro-tubular SOFC through mathematical modeling

Journal

JOURNAL OF POWER SOURCES
Volume 174, Issue 1, Pages 246-254

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jpowsour.2007.08.094

Keywords

solid oxide fuel cells; micro-tube; modeling; current collection

Ask authors/readers for more resources

A two-dimensional model comprising fuel channel, anode, cathode and electrolyte layers for anode-supported micro-tubular solid oxide fuel cell (SOFC), in which momentum, mass and charge transport are considered, has been developed. By using the model, tubular cells operating under three different modes of current collection, including inlet current collector (IC), outlet current collector (OC) and both inlet and outlet collector (BC), are proposed and simulated. The transport phenomena inside the cell, including gas flow behavior, species concentration, overpotential, current density and current path, are analyzed and discussed. The results depict that the model can well simulate the diagonal current path in the anode. The current collecting efficiency as a function of tube length is obtained. Among the three proposed modes, the BC mode is the most effective mode for a micro-tubular SOFC, and the IC mode generates the largest current density variation at z-direction. (C) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available