4.8 Article

Three-Dimensional Nanoporous Graphene-Carbon Nanotube Hybrid Frameworks for Confinement of SnS2 Nanosheets: Flexible and Binder-Free Papers with Highly Reversible Lithium Storage

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 50, Pages 27823-27830

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b09115

Keywords

SnS2 nanosheets; graphene; carbon nanotubes; confinement; flexible anodes; lithium-ion batteries

Funding

  1. National Natural Science Foundation of China [51125011, 51433001]

Ask authors/readers for more resources

The practical applications of transition-metal dichalcogenides for lithium-ion batteries are severely inhibited by their inferior structural stability and electrical conductivity, which can be solved by optimizing these materials to nanostructures and confining them within conductive frameworks. Thus, we report a facile approach to prepare flexible papers with SnS2 nanosheets (SnS2 NSs) homogeneously dispersed and confined within the conductive graphene-carbon nanotube (CNT) hybrid frameworks. The confinement of SnS2 NSs in graphene-CNT matrixes not only can effectively prevent their aggregation during the discharge charge procedure, but also can assist facilitating ion transfer across the interfaces. As a result, the optimized SGC papers give an improved capacity of 1118.2 mA h g(-1) at 0.1 A g(-1) along with outstanding stability. This report demonstrates the significance of employing graphene-CNT matrixes for confinement of various active materials to fabricate flexible electrode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available