4.6 Article

Identification of SVIP as an endogenous inhibitor of endoplasmic reticulum-associated degradation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 282, Issue 47, Pages 33908-33914

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M704446200

Keywords

-

Funding

  1. NIGMS NIH HHS [R01 GM 69967, R01 GM069967] Funding Source: Medline

Ask authors/readers for more resources

Misfolded proteins in the endoplasmic reticulum (ER) are eliminated by a process known as ER- associated degradation (ERAD), which starts with misfolded protein recognition, followed by ubiquitination, retrotranslocation to the cytosol, deglycosylation, and targeting to the proteasome for degradation. Actions of multisubunit protein machineries in the ER membrane integrate these steps. We hypothesized that regulation of the multisubunit machinery assembly is a mechanism by which ERAD activity is regulated. To test this hypothesis, we investigated the potential regulatory role of the small p97/VCP-interacting protein (SVIP) on the formation of the ERAD machinery that includes ubiquitin ligase gp78, AAA ATPase p97/VCP, and the putative channel Derlin1. We found that SVIP is anchored to microsomal membrane via myristoylation and co-fractionated with gp78, Derlin1, p97/VCP, and calnexin to the ER. Like gp78, SVIP also physically interacts with p97/VCP and Derlin1. Overexpression of SVIP blocks unassembled CD3 delta from association with gp78 and p97/VCP, which is accompanied by decreases in CD3 delta ubiquitination and degradation. Silencing SVIP expression markedly enhances the formation of gp78-p97/VCP-Derlin1 complex, which correlates with increased degradation of CD3 delta and misfolded Z variant of alpha-1-antitrypsin, established substrates of gp78. These results suggest that SVIP is an endogenous inhibitor of ERAD that acts through regulating the assembly of the gp78-p97/VCP-Derlin1 complex.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available