4.7 Article

Conformational change induced by metal-ion-binding to DNA containing the artificial 1,2,4-triazole nucleoside

Journal

INORGANIC CHEMISTRY
Volume 46, Issue 24, Pages 10114-10119

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ic700884q

Keywords

-

Ask authors/readers for more resources

A conformational switch can be induced upon the addition of transition-metal ions to oligonucleotides that contain a row of successive artificial nucleobases flanked by complementary sequences of natural nucleobases, provided that the artificial bases cannot undergo self-pairing via hydrogen bonding but only via the formation of metal-ion-mediated base pairs. Such oligonucleotides adopt a hairpin structure in the absence of transition-metal ions, yet they show a preference for the formation of a regular double helix if the appropriate metal ions are present. We report here our experimental data on the structure of the oligonucleotide d(A(7)X(3)T(7)) (A = adenine, T = thymine, X = 1,2,4-triazole) in the absence and presence of silver(I). This study comprising temperature-dependent UV spectroscopy, CD spectroscopy, MALDI-TOF measurements, fluorescence spectroscopy, and dynamic light scattering opens up a new approach to the generation of a large variety of metal-ion sensors with the possibility of fine-tuning their sensing capabilities, depending on the artificial nucleoside that is used.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available