4.7 Article

Observation of slow charge redistribution preceding excited-state proton transfer

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 127, Issue 20, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2803188

Keywords

-

Ask authors/readers for more resources

The photoacid 8-hydroxy-N,N,N',N',N',N'-hexamethylpyrene-1,3,6-trisulfonamide (HPTA) and related compounds are used to investigate the steps involved in excited-state deprotonation in polar solvents using pump-probe spectroscopy and time correlated single photon counting fluorescence spectroscopy. The dynamics show a clear two-step process leading to excited-state proton transfer. The first step after electronic excitation is charge redistribution occurring on a tens of picoseconds time scale followed by proton transfer on a nanosecond time scale. The three states observed in the experiments (initial excited state, charge redistributed state, and proton transfer state) are recognized by distinct features in the time dependence of the pump-probe spectrum and fluorescence spectra. In the charge redistributed state, charge density has transferred from the hydroxyl oxygen to the pyrene ring, but the OH sigma bond is still intact. The experiments indicate that the charge redistribution step is controlled by a specific hydrogen bond donation from HPTA to the accepting base molecule. The second step is the full deprotonation of the photoacid. The full deprotonation is clearly marked by the growth of stimulated emission spectral band in the pump-probe spectrum that is identical to the fluorescence spectrum of the anion. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available