4.7 Review

Interaction of nanostructured metal overlayers with oxide surfaces

Journal

SURFACE SCIENCE REPORTS
Volume 62, Issue 11, Pages 431-498

Publisher

ELSEVIER
DOI: 10.1016/j.surfrep.2007.07.001

Keywords

oxide surfaces; metal films; oxide films; model systems; metal-support interaction; interface reaction; charge transfer; titanium oxide; strontium titanate; aluminum oxide; magnesium oxide; silica; catalysis; growth; epitaxy

Ask authors/readers for more resources

Interactions between metals and oxides are key factors to determine the performance of metal/oxide heterojunctions, particularly in nanotechnology, where the miniaturization of devices down to the nanoregime leads to an enormous increase in the density of interfaces. One central issue of concern in engineering metal/oxide interfaces is to understand and control the interactions which consist of two fundamental aspects: (i) interfacial charge redistribution - electronic interaction, and (ii) interfacial atom transport - chemical interaction. The present paper focuses on recent advances in both electronic and atomic level understanding of the metal-oxide interactions at temperatures below 1000 degrees C, with special emphasis on model systems like ultrathin metal overlayers or metal nanoclusters supported on well-defined oxide surfaces. The important factors determining the metal-oxide interactions are provided. Guidelines are given in order to predict the interactions in such systems, and methods to desirably tune them are suggested. The review starts with a brief summary of the physics and chemistry of heterophase interface contacts. Basic concepts for quantifying the electronic interaction at metal/oxide interfaces are compared to well-developed contact theories and calculation methods. The chemical interaction between metals and oxides, i.e., the interface chemical reaction, is described in terms of its thermodynamics and kinetics. We review the different chemical driving forces and the influence of kinetics on interface reactions, proposing a strong interplay between the chemical interaction and electronic interaction, which is decisive for the final interfacial reactivity. In addition, a brief review of solid-gas interface reactions (oxidation of metal surfaces and etching of semiconductor surfaces) is given, in addition to a comparison of a similar mechanism dominating in solid-solid and solid-gas interface reactions. The main body of the paper reviews experimental and theoretical results from the literature concerning the interactions between metals and oxides (TiO2, SrTiO3, Al2O3, MgO, SiO2, etc.). Chemical reactions, e.g., redox reactions, encapsulation reactions, and alloy formation reactions, are highlighted for metals in contact with mixed conducting oxides of TiO2 and SrTiO3. The dependence of the chemical interactions on the electronic structure of the contacting metal and oxide phases is demonstrated. This dependence originates from the interplay between interfacial space charge transfer and diffusion of ionic defects across interfaces. Interactions between metals and insulating oxides, such as Al2O3, MgO, and SiO2, are strongly confined to the interfaces. Literature results are cited which discuss how the metal/oxide interactions vary with oxide surface properties (surface defects, surface termination, surface hydroxylation, etc.). However, on the surfaces of thin oxide films grown on conducting supports, the effect of the conducting substrates on metal-oxide interactions should be carefully considered. In the summary, we conclude how variations in the electronic structure of the metal/oxide junctions enable one to tune the interfacial reactivity and, furthermore, control the macroscopic properties of the interfaces. This includes strong metal-support interactions (SMSI), catalytic performance, electrical, and mechanical properties. (c) 2007 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available