4.7 Article

Optimization of virus imprinting methods to improve selectivity and reduce nonspecific binding

Journal

BIOMACROMOLECULES
Volume 8, Issue 12, Pages 3893-3899

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/bm7008526

Keywords

-

Ask authors/readers for more resources

Molecular imprinting is a technique that creates synthetic materials containing highly specific receptor sites that have an affinity for a target molecule. When large particles such as viruses are imprinted, special consideration must be taken to ensure the formation of complementary cavities. Factors that influence imprint formation, include uniformity of the precross-linked mixture and release of the virus template after cross-linking. In this study, tobacco mosaic virus (TMV) was used as a model virus. Polymer-virus aggregates formed when poly(allylamine hydrochloride) (PAA) was mixed with TMV at low polymer concentrations (< 0.0001% w/v), but such aggregates were prevented at high polymer concentrations (> 25% w/v). Various wash protocols were compared for their ability to remove the virus template from the cross-linked molecularly imprinted polymer (MIP), with sodium hydroxide (1 M) exhibiting the best performance. On the basis of these results, optimized MIPs targeted for TMV virus were synthesized, exhibiting a high affinity to TMV (imprinting factor of 2.3) and low affinity to tobacco necrosis virus, the nontarget virus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available