4.7 Review

Field-theoretical formulations of MOND-like gravity

Journal

PHYSICAL REVIEW D
Volume 76, Issue 12, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.76.124012

Keywords

-

Ask authors/readers for more resources

Modified Newtonian dynamics (MOND) is a possible way to explain the flat galaxy rotation curves without invoking the existence of dark matter. It is, however, quite difficult to predict such a phenomenology in a consistent field theory, free of instabilities and admitting a well-posed Cauchy problem. We examine critically various proposals of the literature, and underline their successes and failures both from the experimental and the field-theoretical viewpoints. We exhibit new difficulties in both cases, and point out the hidden fine-tuning of some models. On the other hand, we show that several published no-go theorems are based on hypotheses which may be unnecessary, so that the space of possible models is a priori larger. We examine a new route to reproduce the MOND physics, in which the field equations are particularly simple outside matter. However, the analysis of the field equations within matter (a crucial point which is often forgotten in the literature) exhibits a deadly problem, namely, that they do not remain always hyperbolic. Incidentally, we prove that the same theoretical framework provides a stable and well-posed model able to reproduce the Pioneer anomaly without spoiling any of the precision tests of general relativity. Our conclusion is that all MOND-like models proposed in the literature, including the new ones examined in this paper, present serious difficulties: Not only they are unnaturally fine-tuned, but they also fail to reproduce some experimental facts or are unstable or inconsistent as field theories. However, some frameworks, notably the tensor-vector-scalar one of Bekenstein and Sanders, seem more promising than others, and our discussion underlines in which directions one should try to improve them.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available