4.7 Article

The application of photoacoustic absorption spectral data to the modeling of leaf optical properties in the visible range

Journal

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
Volume 45, Issue 12, Pages 4077-4086

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TGRS.2007.904952

Keywords

leaf; photoacoustic absorption spectroscopy (PAS); pigments; reflectance; transmittance

Ask authors/readers for more resources

Due to the importance of plants in the Earth's ecosystem, their photobiological responses have become the subject of extensive research in life sciences. Leaf optical models have been developed to assist in the analysis of remotely sensed data to derive information on leaf biochemistry and anatomy from foliar spectral curves (transmittance and reflectance). In this paper, we investigate the implications of using in vitro pigment absorption spectra to model foliar optical properties in the visible domain. Typically, pigment absorption spectra have been determined using light absorption spectroscopy (AS) or by applying a data fitting approach. Alternatively, we propose the use of photoacoustic pigment AS, which, despite being available in the literature, has not been used in the modeling of foliar optical properties before. We also perform computational experiments in which foliar modeled spectral curves generated using these different absorption data sets are compared with actual measured data. Our findings indicate that the proposed alternative not only allows key pigments to be individually incorporated into the models, which, in turn, increases the predictability of the simulations, but also enables the generation of modeled foliar spectral curves that are more accurate than those obtained using absorption data derived from standard AS procedures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available