4.6 Article

Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum

Journal

APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING
Volume 89, Issue 4, Pages 1017-1024

Publisher

SPRINGER
DOI: 10.1007/s00339-007-4211-6

Keywords

-

Ask authors/readers for more resources

We present an experimental characterization describing the characteristics features of the plasma plume dynamics and material removal efficiency during ultrashort, visible (527 nm, approximate to 300 fs) laser ablation of nickel in high vacuum. The spatio-temporal structure and expansion dynamics of the laser ablation plasma plume are investigated by using both time-gated fast imaging and optical emission spectroscopy. The spatio-temporal evolution of the ablation plume exhibits a layered structure which changes with the laser pulse fluence F. At low laser fluences (F < 0.5 J/cm(2)) the plume consists of two main populations: fast Ni atoms and slower Ni nanoparticles, with average velocities of approximate to 10(4) m/s for the atomic state and approximate to 10(2) m/s for the condensed state. At larger fluences (F > 0.5 J/cm(2)), a third component of much faster atoms is observed to precede the main atomic plume component. These atoms can be ascribed to the recombination of faster ions with electrons in the early stages of the plume evolution. A particularly interesting feature of our analysis is that the study of the ablation efficiency as a function of the laser fluence indicates the existence of an optimal fluence range (a maximum) for nanoparticles generation, and an increase of atomization at larger fluences.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available