4.7 Article Proceedings Paper

Radio frequency electric fields processing of orange juice

Journal

INNOVATIVE FOOD SCIENCE & EMERGING TECHNOLOGIES
Volume 8, Issue 4, Pages 549-554

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ifset.2007.04.012

Keywords

radio frequency electric fields; orange juice; non-thermal pasteurization; quality; E. coli; processing costs

Ask authors/readers for more resources

The non-thermal process of radio frequency electric fields (RFEF) has been shown to inactivate bacteria in apple juice at moderately low temperatures, but has yet to be extended to inactivate bacteria in orange juice. An 80 kW RFEF pasteurizer was used to process pulp-free orange juice at flow rates of 1.0 and 1.41/min. Escherichia coli K 12 in orange juice was exposed to electric field strengths of 15 and 20 kV/cm at frequencies of 21, 30, and 40 kHz. Ascorbic acid (Vitamin C) content and color of the juice before and after treatment were analyzed. Electrical energy costs were calculated using the measured voltage and current. An energy balance was performed using the inlet and outlet temperatures. Processing at an outlet temperature of 65 degrees C reduced the population of E. coli by 3.3 log relative to the control. Increasing the treatment time and temperature and decreasing the frequency enhanced the level of inactivation. Varying the electric field strength over the range of conditions used had no effect on the inactivation. No loss in ascorbic acid or enzymatic browning was observed due to RFEF processing. The electrical energy determined using the voltage and current was 180 J/ml. This was in good agreement with the energy calculated using the temperature data. The electrical cost was $0.0026/1 of orange juice. The results provided the first evidence that the RFEF process inactivates bacteria in orange juice at moderately low temperatures. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available