4.4 Article

A bubble-powered micro-rotor: conception, manufacturing, assembly and characterization

Journal

JOURNAL OF MICROMECHANICS AND MICROENGINEERING
Volume 17, Issue 12, Pages 2454-2460

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/17/12/010

Keywords

-

Ask authors/readers for more resources

A steady fluid flow, called microstreaming, can be generated in the vicinity of a micro-bubble excited by ultrasound. In this paper, we use this phenomenon to assemble and power a microfabricated rotor at rotation speeds as high as 625 rpm. The extractible power is estimated to be of the order of a few femtowatts. A first series of experiments with uncontrolled rotor shapes is presented, demonstrating the possibility of this novel actuation scheme. A second series of experiments with 65 mu m rotors micromanufactured in SU-8 resin is then presented. Variables controlling the rotation speed and rotor stability are investigated, such as the bubble diameter, the acoustic excitation frequency and amplitude and the rotor geometry. Finally, an outlook is provided on developing this micro-rotor into a MEMS-based motor capable of delivering tunable, infinitesimal rotary power at the microscale.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available