4.5 Article

Angiopoietin-related growth factor suppresses gluconeogenesis through the akt/forkhead box class O1-Dependent pathway in Hepatocytes

Journal

Publisher

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.107.127530

Keywords

-

Ask authors/readers for more resources

Angiopoietin-related growth factor (AGF; or Angptl6) is a liver derived, circulating factor and is considered to be a regulator of metabolic homeostasis. AGF is capable of counteracting both obesity and obesity-related insulin resistance. However, the target tissues and the molecular mechanisms underlying the antiobesity and antidiabetic actions of AGF have not been completely defined. Using rat hepatoma H4IIEc3 cells or primary hepatocytes, we demonstrate that AGF suppresses glucose production in a concentration-dependent manner through reduced expression of a key gluconeogenic enzyme, glucose-6- phosphatase (G6Pase), at both transcriptional and translational levels. The action of AGF on glucose production was inhibited by pretreatment of the cells with LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one], a phosphoinositide 3-kinase (PI3K) inhibitor, and Akt (protein kinase B) inhibitors. AGF increased the phosphorylation of Akt and its substrates, glycogen synthase kinase 3 beta and forkhead box class O1 (FoxO1), a key transcription factor for G6Pase expression. Furthermore, an immunohistochemical approach with anti-FoxO1 antibody demonstrated that AGF stimulation promoted translocation of FoxO1 from the nucleus to the cytoplasm in the cells. These results suggest that in hepatocytes, AGF suppresses gluconeogenesis via reduced transcriptional activity of FoxO1 resulting from the activation of PI3K/Akt signaling cascades.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available