4.7 Article

Influence of cardiac-specific overexpression of insulin-like growth factor 1 on lifespan and aging-associated changes in cardiac intracellular Ca2+ homeostasis, protein damage and apoptotic protein expression

Journal

AGING CELL
Volume 6, Issue 6, Pages 799-806

Publisher

WILEY
DOI: 10.1111/j.1474-9726.2007.00343.x

Keywords

aging; cardiomyocytes; IGF-1; intracellular Ca2+; pro- and anti-apoptotic protein

Funding

  1. NIAAA NIH HHS [1R15 AA13575-01] Funding Source: Medline
  2. NIA NIH HHS [1 R03 AG21324-01] Funding Source: Medline

Ask authors/readers for more resources

A fall in circulating levels of cardiac survival factor insulin-like growth factor 1 (IGF-1) contributes to cardiac aging. To better understand the role of IGF-1 in cardiac aging, we examined the influence of cardiac IGF-1 overexpression on lifespan, cardiomyocyte intracellular Ca2+ homeostasis, protein damage, apoptosis and expression of pro- and anti-apoptotic proteins in young and old mice. Mouse survival rate was constructed by the Kaplan-Meier curve. Intracellular Ca2+ was evaluated by fura-2 fluorescence. Protein damage was determined by protein carbonyl formation. Apoptosis was assessed by caspase-8 expression, caspase-3 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assay. Pro- and anti-apoptotic proteins including Bax, p53, pp53, Bcl2, Omi/HtrA2, apoptosis repressor with caspase recruitment domain (ARC) and X-linked inhibitor of apoptosis protein (XIAP) were assessed by Western blot. Aging decreased plasma in IGF-1 levels, elevated myocyte resting intracellular Ca2+ levels, reduced electrically stimulated rise in intracellular Ca2+ and delayed intracellular Ca2+ decay associated with enhanced protein carbonyl formation, caspase-8 expression and caspase-3 activity in FVB mice, all of which with the exception of elevated resting intracellular Ca2+ were attenuated by IGF-1. Aging up-regulated expression of Bax, Bcl2 and ARC, down-regulated XIAP expression and did not affect p53, pp53 and Omi/HtrA2. The IGF-1 transgene attenuated or nullified aging-induced changes in Bax, Bcl2 and XIAP. Our data suggest a beneficial role for IGF-1 in aging-induced survival, cardiac intracellular Ca2+ homeostasis, protein damage and apoptosis possibly related to pro- and anti-apoptotic proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available