4.4 Article

Concurrent encoding of frequency and amplitude modulation in human auditory cortex: Encoding transition

Journal

JOURNAL OF NEUROPHYSIOLOGY
Volume 98, Issue 6, Pages 3473-3485

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00342.2007

Keywords

-

Funding

  1. NIDCD NIH HHS [R01 DC05660] Funding Source: Medline

Ask authors/readers for more resources

Complex natural sounds (e. g., animal vocalizations or speech) can be characterized by specific spectrotemporal patterns the components of which change in both frequency (FM) and amplitude (AM). The neural coding of AM and FM has been widely studied in humans and animals but typically with either pure AM or pure FM stimuli. The neural mechanisms employed to perceptually unify AM and FM acoustic features remain unclear. Using stimuli with simultaneous sinusoidal AM (at rate f(AM) = 37 Hz) and FM (with varying rates F-AM), magnetoencephalography (MEG) is used to investigate the elicited auditory steady-state response (aSSR) at relevant frequencies (f(AM), f(FM), f(AM) + f(FM)). Previous work demonstrated that for sounds with slower FM dynamics (f(FM) < 5 Hz), the phase of the aSSR at f(AM) tracked the FM; in other words, AM and FM features were co-tracked and co-represented by phase modulation encoding. This study explores the neural coding mechanism for stimuli with faster FM dynamics (<= 30 Hz), demonstrating that at faster rates (f(FM) < 5 Hz), there is a transition from pure phase modulation encoding to a single-upper-sideband (SSB) response (at frequency f(AM) + f(FM)) pattern. We propose that this unexpected SSB response can be explained by the additional involvement of subsidiary AM encoding responses simultaneously to, and in quadrature with, the ongoing phase modulation. These results, using MEG to reveal a possible neural encoding of specific acoustic properties, demonstrate more generally that physiological tests of encoding hypotheses can be performed noninvasively on human subjects, complementing invasive, single- unit recordings in animals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available