4.6 Article

Changes in specific lipids regulate BAX-induced mitochondrial permeability transition

Journal

FEBS JOURNAL
Volume 274, Issue 24, Pages 6500-6510

Publisher

WILEY
DOI: 10.1111/j.1742-4658.2007.06166.x

Keywords

BAX; cholesterol; gangliosides; lipid microdomains; mitochondrial permeability transition pore

Ask authors/readers for more resources

Recent evidence suggests the existence of lipid microdomains in mitochondria, apparently coexisting as structural elements with some of the mitochondrial permeability transition pore-forming proteins and members of the Bcl-2 family. The aim of this study was to investigate the relevance of the main components of membrane microdomains (e.g. cholesterol and sphingolipids) in activation of the mitochondrial permeability transition pore (mPTP) by recombinant BAX (rBAX). For this purpose, we used chemically modified renal cortex mitochondria and renal cortex mitochondria from hypothyroid rats that show a modified mitochondrial lipid composition in vivo. Oligomeric rBAX induced an enhanced permeability conformation in the mPTP of control mitochondria. rBAX failed to induce mPTP opening when the cholesterol and ganglioside content of mitochondria were modified with the chelator methyl-beta-cyclodextrin. Accordingly, hypothyroid mitochondria, with endogenously lower cholesterol and ganglioside content, showed resistance to mPTP opening induced by rBAX. These observations suggest that enriched cholesterol and ganglioside domains in the mitochondrial membranes may determine BAX interaction with the mPTP. An intriguing observation was that chemical extraction of cholesterol and ganglioside in control mitochondria did not have an effect on rBAX insertion. Conversely, in hypothyroid mitochondria, rBAX insertion was diminished dramatically compared with control mitochondria. The membrane and protein changes associated with thyroid status and their possible role in rBAX docking into the membranes are discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available