4.7 Article

Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 51, Issue 12, Pages 4438-4446

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.00328-07

Keywords

-

Ask authors/readers for more resources

Small-colony variants (SCVs) of Staphylococcus aureus are a slow-growing subpopulation whose phenotypes can include resistance to aminoglycosides, defects in electron transport, and enhanced persistence in mammalian cells. Here we show that a subset of mutants selected as SCVs by reduced susceptibility to aminoglycosides are resistant to the antibiotic fusidic acid (FA) and conversely that a subset of mutants selected for resistance to FA are SCVs. Mutation analysis reveals different genetic classes of FA-resistant SCVs. One class, FusA-SCVs, have amino acid substitution mutations in the ribosomal translocase EF-G different from those found in classic FusA mutants. Most of these mutations are located in structural domain V of EF-G, but some are in domain I or III. FusA-SCVs are auxotrophic for hemin. A second class of FA-resistant SCVs carry mutations in rplF, coding for ribosomal protein L6, and are designated as FusE mutants. FusE mutants fall into two phenotypic groups: one auxotrophic for hemin and the other auxotrophic for menadione. Accordingly, we have identified new genetic and phenotypic classes of FA-resistant mutants and clarified the genetic basis of a subset of S. aureus SCV mutants. A clinical implication of these data is that FA resistance could be selected by antimicrobial agents other than FA.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available