4.6 Article

High Weight Differences between Donor and Recipient Affect Early Kidney Graft Function-A Role for Enhanced IL-6 Signaling

Journal

AMERICAN JOURNAL OF TRANSPLANTATION
Volume 9, Issue 8, Pages 1742-1751

Publisher

WILEY
DOI: 10.1111/j.1600-6143.2009.02725.x

Keywords

Anti-IL-6R mAb; early graft function; transplantation; weight difference

Ask authors/readers for more resources

The frequency of delayed function of kidney transplants varies greatly and is associated with quality of graft, donor age and the duration of cold ischemia time. Furthermore, body weight differences between donor and recipient can affect primary graft function, but the underlying mechanism is poorly understood. We transplanted kidney grafts from commensurate body weight (L-WD) or reduced body weight (H-WD) donor rats into syngeneic or allogeneic recipients. Twenty-four hours posttransplantation, serum creatinine levels in H-WD recipients were significantly higher compared to L-WD recipients indicating impaired primary graft function. This was accompanied by upregulation of IL-6 transcription and increased tubular destruction in grafts from H-WD recipients. Using DNA microarray analysis, we detected decreased expression of genes associated with kidney function and an upregulation of other genes such as Cyp3a13, FosL and Trib3. A single application of IL-6 into L-WD recipients is sufficient to impair primary graft function and cause tubular damage, whereas immediate neutralization of IL-6 receptor signaling in H-WD recipients rescued primary graft function with well-preserved kidney graft architecture and a normalized gene expression profile. These findings have strong clinical implication as anti-IL6R treatment of patients receiving grafts from lower-weight donors could be used to improve primary graft function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available