4.0 Article

A model of aging as accumulated damage matches observed mortality patterns and predicts the life-extending effects of prospective interventions

Journal

AGE
Volume 29, Issue 4, Pages 133-189

Publisher

SPRINGER
DOI: 10.1007/s11357-007-9038-8

Keywords

aging; damage; intervention; lifespan; longevity escape velocity; rejuvenation; reserve; simulation

Ask authors/readers for more resources

The relative insensitivity of lifespan to environmental factors constitutes compelling evidence that the physiological decline associated with aging derives primarily from the accumulation of intrinsic molecular and cellular side-effects of metabolism. Here we model that accumulation starting from a biologically based interpretation of the way in which those side-effects interact. We first validate this model by showing that it very accurately reproduces the distribution of ages at death seen in typical populations that are well protected from age-independent causes of death. We then exploit the mechanistic basis of this model to explore the impact on lifespans of interventions that combat aging, with an emphasis on interventions that repair (rather than merely retard) the direct molecular or cellular consequences of metabolism and thus prevent them from accumulating to pathogenic levels. Our results strengthen the case that an indefinite extension of healthy and total life expectancy can be achieved by a plausible rate of progress in the development of such therapies, once a threshold level of efficacy of those therapies has been reached.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available