4.5 Article

Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 27, Issue 23, Pages 8143-8151

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.01187-07

Keywords

-

Ask authors/readers for more resources

Myocyte enhancer factor 2 (MEF2) transcription factors cooperate with the MyoD family of basic helixloop-helix (bHLH) transcription factors to drive skeletal muscle development during embryogenesis, but little is known about the potential functions of MEF2 factors in postnatal skeletal muscle. Here we show that skeletal muscle-specific deletion of Mef2c in mice results in disorganized myofibers and perinatal lethality. In contrast, neither Mef2a nor Mef2d is required for normal skeletal muscle development in vivo. Skeletal muscle deficient in Mef2c differentiates and forms normal myofibers during embryogenesis, but myofibers rapidly deteriorate after birth due to disorganized sarcomeres and a loss of integrity of the M line. Microarray analysis of Mef2c null muscles identified several muscle structural genes that depend on MEF2C, including those encoding the M-line-specific proteins myomesin and M protein. We show that MEF2C directly regulates myomesin gene transcription and that loss of Mef2c in skeletal muscle results in improper sarcomere organization. These results reveal a key role for Mef2c in maintenance of sarcomere integrity and postnatal maturation of skeletal muscle.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available