4.7 Review

A review of charge transport and recombination in polymer/fullerene organic solar cells

Journal

PROGRESS IN PHOTOVOLTAICS
Volume 15, Issue 8, Pages 677-696

Publisher

WILEY
DOI: 10.1002/pip.791

Keywords

time-of-flight; bulk-heterojunction; solar cells; bimolecular recombination; Langevin recombination; charge transport

Ask authors/readers for more resources

The charge carrier transport and recombination in two types of thermally treated bulk-heterojunction solar cells is reviewed. in regioregular poly(3-hexylthiophene) (RRP3HT) mixed with 1-(3-methoxycarbonyl)propyl-1-phenyl-[6,6]-methanofullerene (PCBM) and in the blend of poly[2-methoxy-5-(3,7-dimethyloctyloxy)phenylene vinylene] (MDMO-PPV) mixed with PCBM. The charge carrier mobility and bimolecular recombination coefficient have been comparatively studied by using various techniques including Time-of-Flight (ToF), Charge Extraction by Linearly Increasing Voltage (CELIV), Double Injection (DI) transients, Current-Voltage (I-V) technique. It was found that the carrier mobility is at least an order of magnitude higher in RRP3HT/PCBM blends compared to MDMO-PPV/PCBM. Moreover, all used techniques demonstrate a heavily reduced charge carrier recombination in RRP3HT/PCBM films compared to Langevin-type carrier bimolecular recombination in MDMO-PPV/PCBM blends. As a result of long carrier lifetimes the formation of high carrier concentration plasma in RRP3HT/PCBM blends is demonstrated and plasma extraction methods were used to directly estimate the charge carrier mobility and bimolecular recombination coefficients simultaneously. A weak dependence of bimolecular recombination coefficient on the applied electric field and temperature demonstrates that carrier recombination is not dominated by charge carrier mobility (Langevin-type recombination) in RRP3HT/PCBM blends. Furthermore, we found from CELIV techniques that electron mobility in RRP3HT/PCBM blends is independent on relaxation time in the experimental time window (approx. hundreds of microseconds to tens of milliseconds). This reduced carrier bimolecular recombination in RRP3HT/PCBM blends implies that the much longer carrier lifetimes can be reached at the same concentrations which finally results in higher photocurrent and larger power conversion efficiency of RRP3HT/PCBM solar cells. Copyright (c) 2007 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available