4.4 Article

The rodent Four-jointed ortholog Fjx1 regulates dendrite extension

Journal

DEVELOPMENTAL BIOLOGY
Volume 312, Issue 1, Pages 461-470

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2007.09.054

Keywords

four-jointed; dendrite; hippocampus; planar cell polarity

Ask authors/readers for more resources

The extrinsic and intrinsic factors that regulate the size and complexity of dendritic arborizations are still poorly understood. Here we identify Fjx1, the rodent ortholog of the Drososphila planar cell polarity (PCP) protein Four-jointed (Fj), as a new inhibitory factor that regulates dendrite extension. The Drosophila gene four-jointed (fj) has been suggested to provide directional information in wing discs, but the mechanism how it acts is only poorly understood and the function of its mammalian homolog Fjx1 remains to be investigated. We analyzed the phenotype of a null mutation for mouse Fjx1. Homozygous Fjx1 mutants show an abnormal morphology of dendritic arbors in the hippocampus. In cultured hippocampal neurons from Fjx1 mutant mice, loss of Fjx1 resulted in an increase in dendrite extension and branching. Addition of Fjx1 to cultures of dissociated hippocampal neurons had the opposite effect and reduced the length of dendrites and decreased dendritic branching. Rescue experiments with cultured neurons showed that Fjx1 can act both cell-autonomously and non-autonomously. Our results identify Fjx1 as a new inhibitory factor that regulates dendrite extension. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available