4.7 Article

QTL analysis reveals context-dependent loci for seed glucosinolate trait in the oilseed Brassica juncea:: importance of recurrent selection backcross scheme for the identification of 'true' QTL

Journal

THEORETICAL AND APPLIED GENETICS
Volume 116, Issue 1, Pages 77-85

Publisher

SPRINGER
DOI: 10.1007/s00122-007-0648-4

Keywords

-

Ask authors/readers for more resources

Seed glucosinolate content in Brassica juncea is a complex quantitative trait. A recurrent selection backcross (RSB) method with a doubled haploid (DH) generation interspersing backcross generations was used for the introgression of low glucosinolate alleles from an east European gene pool B. juncea line, Heera into an Indian gene pool variety, Varuna. Phenotypic comparisons among the DH populations derived from early to advanced back-crosses revealed a shift in the mean values for various glucosinolates with the advancement of backcrossing, indicating a change in the selective values of the alleles with change in the genetic background due to the existence of epistasis and context dependencies. QTL mapping for various seed glucosinolates from early (F1DH) and advanced generation (BC4DH) populations confirmed the presence of epistasis and context dependency. The common QTL detected in both F1DH and BC4DH changed their R-2 values from the former to the later generation. Some of the QTL detected in the F1DH became irrelevant in the BC4DH population. Further, new QTL were detected in the BC4DH population for various glucosinolates. A validation study on a population of low glucosinolate DH lines derived from all the backcross generations of the RSB breeding programme revealed that the QTL detected in BC4DH were the 'true' QTL. Using glucosinolate as an example, the study provides strong evidence for the importance of the RSB method for the identification of the 'true' QTL which would be significant for marker assisted introgression of a complex quantitative trait whose expression is influenced by epistatic interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available