4.7 Article

Microstructure and mechanical properties of mechanically alloyed and spark plasma sintered amorphous-nanocrystalline A165CU20Ti15 intermetallic matrix composite reinforced with TiO2 nanoparticles

Journal

INTERMETALLICS
Volume 15, Issue 12, Pages 1595-1605

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.intermet.2007.06.012

Keywords

nanostructured intermetallics; composites; mechanical properties at ambient temperature; mechanical alloying and milling; sintering

Ask authors/readers for more resources

Multiphase Al65Cu20Ti15 intermetallic alloy matrix composite, dispersed with 10 wt.% of TiO2 nanoparticles, has been processed by mechanical alloying, followed by spark plasma sintering under pressure in the temperature range of 623-873 K. Differential scanning calorimetry and X-ray diffraction suggest that equilibrium crystalline phases evolve from the amorphous or intermediate crystalline phases. Transmission electron microscopy shows that the composite sintered at 873 K has partially amorphous microstructure, with dispersion of equilibrium, crystalline, intermetallic precipitates of Al5CuTi2, Al3Ti, and Al2Cu of 25-50 nm size, besides the TiO2. The composite sintered at 873 K exhibits little porosity, hardness of 5.6 GPa, indentation fracture toughness in the range of 3.1-4.2 MPa root m, and compressive strength of 1.1 GPa. Indentation crack deflection by TiO2 particle aggregates causes increase in fracture resistance with crack length, and suggests R-curve type behaviour. The study provides guidelines for processing high strength amorphous-nanocrystalline intermetallic composites based on the Al-Cu-Ti ternary system. (c) 2007 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available