4.6 Article

Structure-functional property relationships in rf-sputtered vanadium dioxide thin films

Journal

JOURNAL OF APPLIED PHYSICS
Volume 102, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2817818

Keywords

-

Ask authors/readers for more resources

The study of metal-insulator transition (MIT) in VO2 thin films synthesized by means of rf sputtering from a VO2 target is presented. A comparison with conventional reactive sputtering from a V target is also given. Detailed x-ray diffraction analysis, electrical resistance switching, and infrared optical reflectance measurements confirm that our sputtering technique yields high-quality VO2 films. We discuss in depth how synthesis conditions affect MIT parameters derived from temperature dependence of electrical resistance. Sharp MIT is observed in films sputtered on technologically important Si substrates. The choice of Si (or sapphire) substrates results in the transition temperature above (below) the values obtained for single VO2 crystals. The MIT becomes narrower and stronger in thinner films. This is consistent with the assumption that the increased width of the MIT in thin films with respect to single crystals is the result of averaging of the transition parameters over a distribution of crystallites in the film. The measurements of MIT in VO2 patterned into devices do not reveal a noticeable lateral size effect down to 20 mu m devices, encouraging use of the phase transition in switching electronic devices. The effect of substrate temperature and ambient during the sputtering on MIT is discussed. While VO2 films are found to be stable in ambient environment with time, the additional exposure to UV radiation near room temperature is shown to enhance the oxidation kinetics and produce changes in film resistance. Using UV radiation as an additional tool to control the oxidation process during VO2 synthesis may allow the synthesis temperature to be lowered and an improvement in material quality. We anticipate these results may be of relevance to synthesizing functional oxide films with potential applications in electronics and sensors. (c) 2007 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available