4.5 Article

Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template

Journal

POLYMER ENGINEERING AND SCIENCE
Volume 47, Issue 12, Pages 2020-2026

Publisher

WILEY
DOI: 10.1002/pen.20914

Keywords

-

Ask authors/readers for more resources

While electrospinning provides an excellent preparation method for the manufacturing of polymer fibers with defined diameter, controlling the overall porosity of the resulting fiber assemblies has remained elusive, particularly at higher porosities. In this study, the use of a low-temperature fiber collection device in air with con trolled humidity allowed the simultaneous deposition of polymer fibers and ice particles from condensing humidity. The ice particles were intimately embedded within the polymer fibers and served as a pore template thus defining the mesh porosity after drying of the collected fiber assemblies. The amount of water condensation therefore contributes to the control of the mean interfiber distance and the resulting porosity. This simple and well accessible use of ice crystals as void templates gives access to the preparation of biodegradable tissue engineering scaffolds with an up to four times higher porosity if compared to conventional fiber electrospinning. The successful application of low-temperature electrospinning using polyesters or polyurethanes suggests a broad, material independent applicability of the process for the preparation of highly porous polymer structures. POLYM. ENG. SCI., 47:2020-2026, 2007. (C) 2007 Society of Plastics Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available