4.3 Article

Benders decomposition with alternative multiple cuts for a multi-product closed-loop supply chain network design model

Journal

NAVAL RESEARCH LOGISTICS
Volume 54, Issue 8, Pages 890-907

Publisher

WILEY
DOI: 10.1002/nav.20262

Keywords

closed-loop supply chains; network design; Benders decomposition

Ask authors/readers for more resources

In this article, we consider a multi-product closed-loop supply chain network design problem where we locate collection centers and remanufacturing facilities while coordinating the forward and reverse flows in the network so as to minimize the processing, transportation, and fixed location costs. The problem of interest is motivated by the practice of an original equipment manufacturer in the automotive industry that provides service parts for vehicle maintenance and repair. We provide an effective problem formulation that is amenable to efficient Benders reformulation and an exact solution approach. More specifically, we develop an efficient dual solution approach to generate strong Benders cuts, and, in addition to the classical single Benders cut approach, we propose three different approaches for adding multiple Benders cuts. These cuts are obtained via dual problem disagegation based either on the forward and reverse flows, or the products, or both. We present computational results which illustrate the superior performance of the proposed solution methodology with multiple Benders cuts in comparison to the branch-and-cut approach as well as the traditional Benders decomposition approach with a single cut. In particular, we observe that the use of multiple Benders cuts generates stronger lower bounds and promotes faster convergence to optimality. We also observe that if the model parameters are such that the different costs are not balanced, but, rather, are biased towards one of the major cost categories (processing, transportation or fixed location costs), the time required to obtain the optimal solution decreases considerably when using the proposed solution methodology as well as the branch-and-cut approach. (c) 2007 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available