4.6 Article

Long barotropic waves generated by a storm crossing topography

Journal

JOURNAL OF PHYSICAL OCEANOGRAPHY
Volume 37, Issue 12, Pages 2809-2823

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2007JPO3687.1

Keywords

-

Categories

Ask authors/readers for more resources

Storms crossing topography are shown to radiate long surface gravity waves. The waves are transients generated by changes in the depth-dependent amplitude of the atmospherically forced pressure wave beneath a storm. This generation mechanism for long waves, known as meteorological tsunamis or rissaga, does not appear to have been previously discussed. The transients have periods equal to the passage time of the storm, of order 30 min for small fast-moving storms. A 1D model is used to give the amplitudes of the transient waves generated by a small fast-moving storm crossing a topographic step on to a continental shelf and across a ridge. Large transients are generated by storms whose translation speed is subcritical in deep water and supercritical in shallow water, that is, faster than the shallow-water wave speed. Surprisingly, when the depth difference between the deep water and the continental shelf is large, a gentle transition from deep to shallow water over 10 storm widths only slightly reduces the amplitudes of the transients. The influence of a finite-width shelf on the enhancement of coastal storm surge is also discussed. A 2D numerical model illustrates the topographic transients generated by sub-and supercritical storms moving across a ridge. Topographic transients are suggested as a source of energy for seiches on shelves and within embayments. The energy may come from a storm crossing the adjacent continental slope and possibly from distant open-ocean storms crossing multiple ridges and seamounts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available