4.5 Article

Monocular deprivation reduces reliability of visual cortical responses to binocular disparity stimuli

Journal

EUROPEAN JOURNAL OF NEUROSCIENCE
Volume 26, Issue 12, Pages 3553-3563

Publisher

BLACKWELL PUBLISHING
DOI: 10.1111/j.1460-9568.2007.05946.x

Keywords

binocular exposure; monocular deprivation; single-cell recordings; spatial phase disparity

Categories

Funding

  1. Medical Research Council [G0500186] Funding Source: researchfish
  2. MRC [G0500186] Funding Source: UKRI
  3. Medical Research Council [G0500186] Funding Source: Medline

Ask authors/readers for more resources

While continuous monocular deprivation (MD) of patterned vision causes severe loss of visual cortical responses and visual acuity in the affected eye, these effects can be avoided by providing brief daily periods of binocular exposure [BE; D.E. Mitchell et al. (2003) Curr. Biol., 8, 1179-1182; D.E. Mitchell et al. (2006) Eur. J. Neurosci., 23, 2458-2466; D.S. Schwarzkopf et al. (2007) Eur. J. Neurosci., 25, 270-280]. In order to analyse binocular mechanisms involved in this phenomenon, we studied neuronal responses in primary visual cortex to binocular disparity stimuli in cats that had experienced mixed daily visual exposure (i.e. different amounts of daily binocular and monocular exposure). To examine whether binocular responses are as reliable in MD as in normal animals, we analysed single-trial responses to spatial phase disparity stimuli. In cats with various amounts of daily binocular experience (3.5 h, 7 h or 12 h) alone, about half of neurons (47.9%) showed reliable phase-specific binocular responses in two consecutive trials. The percentage of phase-selective cells was reduced in cats with mixed visual exposure with a decrease in the duration of daily BE. Within these neurons, a 'stable' cell population, i.e. with identical relative phases eliciting the strongest and weakest responses in two trials, was also reduced. In other words, the responses of neurons recorded from deprived animals were more likely to show different preferred phases on successive trials, although their amplitude ratios in both trials were about equal. We suggest that the detrimental effect of MD on binocular vision may begin, at least in part, with a subtle disruption of the mechanism involved in discrimination of binocular disparity signals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available